
iii»wiyiiiW]iM«WilU>lll|l|lW'«lll'f."n:^

PREDICTION AND CONTROL

THROUGH THE USE PF

AUTOMATA AND THEIR EVOLUTION

NATIONATTECHNICAL

'TD D C.
W NOV 18 1970 ^ !

JUtÄäSII'U lilH

DECISION SCIENCE, INC.
4508 MISSION BAY DRIVE

SAN DIEGO, CALIFORNIA

92109 (714) 273-2922

PREDICTION AND CONTROL

THROUGH THE USE OF

AUTOMATA AND THEIR EVOLUTION

Final Report On:

Contract No. N00014-66-C-0284

Prepared By:

Michael J. Walsh

George H. Bürgin

Lawrence J. Fogel, Principal Investigator

September 15, 1970

002

D DC-
m 18 1970 '

B

I

INTRODUCTION

Finite-state machines provide a natural means for repre-

senting the logic which may underlie a sequence of data de-

rived from a sensed environment or for depicting the trans-

duction between stimulus and response of such an environment.

Such representation permits expansion of the logic in terms

of arbitrary input and output languages so long as these are

expressed within finite alphabets. Further, the machines may

be of arbitrary specificity so long as they have only a finite

number of states. Thus, no unnatural constraint is imposed,

as is so often the case when a sequence of data is expressed

in terms of a best linear fit or when a transduction is ex-

pressed in terms of a linear difference or differential equa-

tion. More powerful logical entities can be considered, but

these may be identified with problems which reduce their ac-

ceptabili ty.

The concept of evolutionary programming was conceived

as a means to find a most appropriate finite-state machine

for the purpose of prediction or modeling in terms of the

available data base and an arbitrary expression of goal (a

payoff or error-cost matrix). Formulation of this concept

can be traced through various publications. A review of the

/

/

003

iWMMHMMi

t

concepts of evolutionary programming, its application in terms

of prediction experiments, data reduction and analysis, and

control system design were described (reference 1), this work

being supported in part by the Office of Naval Research. This

reference also indicates application in terms of gaming and the

possible automation of the scientific method. Further practi-

cal and theoretical studies along these lines were described

(references 2 through 12). These references concern the pre-

diction of solar flares, the problem of self-referencing, model-

ing of the human operator, the design of self-sufficient pros-

theses, and gaming in various contexts.

In this work certain problems have been recognized and

resolved while others have been identified and brought into

closer perspective. Fundamental to all these is the limit of

evolutionary programming in terms of efficiency and the poten-

tial use of th>s technique for gaining greater insight into

aspects of natural evolution.

This final report does not contain previously published

material. Rather, it includes specific findings which serve

to clarify the capability and limitations of using automata

and evolutionary programming for the purpose of prediction

and control.

004

DISCUSSION

Choosing the size of a finite-state machine always pre-

sents a problem. Obviously any finite sequence of symbols can

be perfectly fit by a large enough machine, but it would most

likely be a poor predictor, for the states would be exercised

so rarely that the machine would not represent any of the un-

derlying regularity of the process whereby the sequence of

symbols was generated. This problem was recognized early in

the development of evolutionary programming and so a complex-

ity factor was introduced to inhibit the growth of machine

size. Initially this factor was input data to the program,

but to choose a suitable value for the complexity factor,

seme a priori knowledge was required (whether it is cyclic,

stochastic, and so forth). Various techniques were developed

so that the program could directly determine machine size or

indirectly control the growth of machines by assigning approp-

riate values to the complexity factor. However, none of these

techniques work well for all of the environments which were

/considered.

The primary difficulty in this regard was that the choice

between a parent and offspring had to be on the basis of fit-

score, and larger machines generally tend to have better fit-

005

scores due to the fact that many of the state-input pairs are

exercised only once over the recall. The output algorithm

then assigns the symbol giving smallest error-cost to each

state-input pair and, thus, assigns the correct symbol to each

such singleton state-input pair.

The first technique used to eliminate this overemphasis

on fit-score requires that the program maintain several classes

of machines, usually three or four. One class consists of a

one-state machine while a second class consists of machines

having a number of states which exceeds some specified lower

limit but remains less than some upper limit determined by the

computer memory. The third class or additional classes con-

sists of machines with specified lower and upper bounds on the

number of states. The lower bounds usually exceed one and the

upper bounds are generally below the lower limit of the class

of large machines.

After the initial period during which the machine having

the best fit-score is used as the predictor, a machine is cho-

sen from that class which indicates the best "action" score

over the last k predictions, k being some preassigned number.

In general, this metliod yielded an improvement over the pre-

vious scheme which maintained only a single machine, but it

increases the storage problem as well as the cost of comput-

tation. Note that here several machines must be referenced

and the current machine of each class must be mutated during

each mutation phase.

00G

Another algorithm was then devised which considered the

result of only those inputs which exercise other than single-

ton state-input pairs in determining the average error score

(the fit-score). This technique as well as the earlier algor-

ithms were tested against a first-order Markov process (using

the single machine algorithm versus the multiple machine al-

gorithm since the latter always had a one-state machine which

would be the best finite-state for a first-order Markov pro-

cess). The newly developed technique demonstrated not only

a better prediction score, but through its use, the size of

the machines decreased while machine size grew in the older

version.

In many situations the plant or other transducer under

consideration is actually a composite of smaller logical en-

tities, the composition being parallel, series, or a combin-

ation of parallel and series. In such a case the number of

states in a single machine representation of the transucer is,

in general, the product of the number of states in the smaller

machines. For example, parallel compositions of a six-state

and a nine-state machine results in a 54-state machine (al-

though the actual number of states required may be less than

54 since there may be some redundancy identifiable and some

state combinations may not be reached from the given starting

state). Thus, when a machine can be decomposed into smaller

007

machines, the total number of states which must be considered

is considerably reduced. This also raises the question as to

whether or not a machine, even if not decomposable, is a sub-

machine of a decomposable machine. Thus, theoretical and ex-

perimental effort was applied to the problem of parallel de-

composition.

A program was written to evolve a parallel composition

of two finite-state machine which would fit the transduction

of a larger finite-state machine. In the initial experiment,

a six-state machine with eight-symbol input was known to be

the parallel composition of a two-state machine (the output

symbols of which were the high-order bit of the larger machine's

symbols) and a three-state machine (the output symbols of which

were the two lower-order bits of the larger machine's symbols).

After 385 mutations the program successfully evolved the approp-

riate two-state and three-state machines.

Before applying the program to arbitrary machines, some

criteria should be established as a guide for determining if

the program is evolving machines which, in parallel composi-

tion, adequately simulate or approximate the given machine.

Thus, an effort was made to determine the "best" parallel de-

composition of a given machine for a given decomposition of

the input-output alphabet of a machine, if possible. This

would provide a means for assessing how well the evolutionary

program performs. Theoretical aspects of this problem were

also considered.

008

In the case of a machine which is the parallel composi-

tion of two machines, a decomposition scheme should produce

these two machines. This case was considered first:

Let M, = (A, B,, Q,, x,, 6,) and '1 1 » X] » Al , O-J

M2 = (A, Bg» Qg» ^2* 52^ be reclucec' machines and let

M = (A, B. Q, x, 6)

be the parallel composition of M, and M2 so that B = B, x B«,

Q = QT x Q2, Ata.fq^ q2)) = (x^a, q^, x2(a, qg)) and

«(a.Cq^ q2)) = U^a, q^.Ögta, q2)).

Let M] = (A. B^ Q. x, &\) with

6j (a. (q^ q2)) = s^ia, q}) and

M^ = (A, B2t Q, x, 6^) with

ö2 (a, (q1, q2)) = ö2(a, q2).

Then M, is the reduced machine of M| and M2 is the reduced

machine of MA.

With this result as a guide, consider a machine M =

(A, B, Q, x, 6) and any decomposition of B into a direct pro-

duct of two sets, say, B-, and B2, for example, B = B-, x B2.

Then there exists unique functions 61 and 62 with 0, mapping

A x Q into B^ and 62 mapping A x Q into B2 so that ö(a, q) =

009

(^(a, q), 62(a, q)).

Let Mj = (A, B1, Q, x, 6^ and

M^ = (A, B2. Q, A. ö2)

Then if under this decomposition of B, M is as before the

parallel composition of machines M, and M», it can be shown

that M^ is the reduced machine of M^ and Mg is the reduced

machine of Mi.

In general, if M, is the reduced machine of Mi and M«

is the reduced machine of Mi. then there is a submachine N

of the parallel composition of M-j and Mg such that M is the

reduced machine of N. This is the case if M is reduced,

otherwise M and N have the same reduced machine.

In view of these results, for a given decomposition of

the output alphabet, the reduced machines of the machines

Mj and M^ constructed as above from a given machine M yield

the best parallel decomposition of M.

In the parallel case, the machines are essentially inde-

pendent so that independent modeling is possible. This is

not necessarily true in the series composition. If the in-

puts and outputs of each part is known, then the problem re-

duces to that of modeling individual plants. If the intermed-

iate outputs and hence the intermediate inputs are not avail-

able so that only the initial input and final output are known,

Oio

then it is not possible to independently model the parts.

For example, consider the series composition of plant

P1 followed by plant Pg where only the input to P, and the

output from P» are known. Suppose modeling by the series com-

position of a finite-state machine M^ followed by machine

Mo is being attempted. If machine M, is kept fixed, then it

is possible to evolve the best machine l^, since input and

output to M, are not affected by changes in Mg. However,

when M« is fixed, evolving a best M^ presents a problem in

that a mutation of l^ and the resulting change in its output

changes the input environment to Mp. However, since the ex-

pected output from M« is invariant, this would, in general,

result in a degradation of M2 as a model. Further, since ex-

pected output from M, is not known, the current versions of

the evolutionary program cannot be applied since this know-

ledge is required in their operation. It was, therefore, felt

that effort should be directed toward a theoretical investiga-

tion of series composition to determine, if possible, effective

algorithms for evolving the series composition of finite-state

machines. Some preliminary results are given here.

Suppose machine M is the series composition of machines

M, and M« (composition in the order named), where

M1 = (A, B, Q, x}t 6]t q0) and

M2 = (B, C, P, x2. 62» P0)-

on

m

Then

M = (A, C. Q x P. x, 6. (q0. P0)) where

x(a. (q. p)] = ^(a, q), x2 (fi^a, q), pj) and

«(a, (q, p)) = 62 (61 ^a» q^ p) *

Observe that Q x P = \j ({q } x P) and also that
qGQ

Q x P = u (Q x {p}) .
pCP v /

Consider the first of these decompositions of Q x P and

let S1 = iq^ x P so that Q x P = US^ Now for i ?« j . S^ S.

|9 (null or empty set). Hence, {Si}is a partition of Q x P.

Moreover, if x1 (a, q^) = q., then

x(a. S.) = x(a, ^j. x p)

= U-l (a, q^, X2 ^ (a. q^, PJ)

4i x P

That is.

x(a, S^ cSj

012

It Is also true that If T| = Q x \PA* then {TJIS a par-

tition of Q x P. However» consider (q^ p.) and (qg, p^) with

q, / q«. Both of those are In T...

Now:

x(a, (qlt p1)) = ^ (a, q^, x2 U^ (a, q^, pSj and

x(a, (q2, p^ij = ^ (a, q2). x2 (&} (a, q2), p.jj

But, In general, It Is possible that 6^(a, q-.) / 6|(a, q2)

and hence that x^fi^a, q^, p^ t x2 ^(a, q2), p\ .

It Is, therefore, not always the case that x(a, T.) CT. for

some .. So while <JA Is a partition. It Is not Invariant

under the x mapping while the partition Is.i Is.

On the basis of the partition HA* It follows that for

a finite-state machine to be a series composition of two ma-

chines. It Is necessary that a partition of the states exists

which Is Invariant under the x mapping. The set of singleton

states forms such a partition but this would lead to the triv-

ial series composition of the given finite-state machine with

a one-state machine. This partition Is excluded as an allow-

able one, for example. In an allowable partition, not all of

the sets In the partition can be singleton sets.

With the partition <q- x P? as a guide, the problem of

decomposing a given finite-state machine Into a series compo-

013

sltlon of machines is considered. Let M be a finite-state

machine where M « (A, C, S. x, 6> s) and suppose S -

SU,,*Lek such that for each a In A and each 1 there Is a j

such that x(a, S^)CS.. (For a set X, let X be the cardin-

ality of X, that Is, the number of elements In it). If

necessary, relabel the states so that

sij h < J 5 Is ■ii
and s = s,,. Let I. be the set consisting of the first k

positive integers, let B = A x K and denote the pair (a., j)

by b... Let

Q = {qJ 1 in Ik}

be a set of k new symbols and consider the finite-state machine

M1 with

M1 = (A, B, Q, A^ 6^ q^ where

X^a, q^ * q. whenever

x(a, S^)CS. and 6^8^ q.) = b... Let

P = {Pl|
1 < 1 < r1

014

be a set of r new symbols, where r = max|s,|, let c be In C,

and consider the finite-state machine Mg with

Mg » (B, C, P, Xgi &£$ P]) where

x2^bii* kn^ s pm whenever n < S. and

x(ai' sjn) = skm

= pr otherwise and

XgCb^, pn) = 6(3^., Sjn) whenever n < |sj|

= c otherwise.

Theorem. M is equivalent to a submachine of the series compo-

sition of M1 and Mg. If Is-I = r for all j, M is equivalent

to the series composition of M-. and Mg.

The identification problem arises whenever it is required

to determine a logical representation for the transduction

which is presumed to couple two sequences of symbols (the pre-

sumed Input and output of a black box). Evolutionary program-

ming was demonstrated as a means for addressing this problem.

015

For example, the finite-state machines shown In Figures 1 and

2 were driven by a forcing function, these Input and output

sequences being used as a basis for modeling by both the evo-

lutionary program and the human operator. Specifically, Tables

1 and 2 Indicate the Input and output sequences In each of these

experiments. Table 3 provides a comparison of the modeling capa-

bility of the human operator with that of the evolutionary pro-

gram In terms of predicting each next symbol on the basis of

the currently held model.

The Identification problem often arises within the context

of prior information concerning the equations of motion or some

other governing differential equations. It is of interest to

utilize the basic format of the equations and perform an analy-

sis of the available data base which will provide a best esti-

mate of each of the unknown parameters, thus, completing the

identification as required. For example, suppose that one is

given a linear matrix differential equation of the form

x = Ax + Bu

where x Is a vector of n state variables, u is a vector of m

control variables, A is a time invariant n x m matrix, and B

is a time invariant n x m matrix. Find, from a given time his-

tory of x(t) and u(t)(and, possibly, x(t)), the unknown param-

eters of the A and B matrix.

01G

n

o

<

UJ
»-
<

I
UJ

i-

017

I
CM

CSJ

o

o CM

0)

o»

018

Tiblt 1.

INPUT AND OUTPUT OF MACHINE I

Input Sequence
1123132113122213131332

2113332333312112312332

2231332232312222321121

3122333322132133323132

1311221122332313123331

3311331332123223121211

1121333121111132232213

132211132123223 2312331

2122111132312122 131212

1331233132123211322312

1112311221211123322322

112 2 2 3 12 3 2 122332332123

1122121221133222213311

23211311132213

Output Sequeno

233333313323121323232 1

2133233332333 2 23333333

3132321211121313332232

1313332331331132333333

1323313323311323233322

132332213 3133313211322

3332131313333333333333

2333333331333131121113

2131333331121131332113

2132333211333322333323

22333333132133333333 3. 3

3313132111131312112133

333132 1-313331231321323

33322323333333

019

Tablt 2.
INPUT AND OUTPUT OF MACHINE II

Input Sequence

1123132113122213131332

2113332333312112312332

2231332232312222321121

3122333322132133323132

1311221122332313123331

3311331332123223121211

1121333121111132232213

1322111321232232312331

2122111132312122131212

1331232132123211322312

1112311221211123322322

1122231232122332332123
1122121221133 2 22213311
23311311132213

Output Sequence
3 2 1 1 3 1 2 2 2 3 2 i 2 1 3 3 2 2 2 3 1 2

3 2 2 1 1 1 2 1 1 1 1 2 1 3 2 1 1 3 2 1 1 1

! 2 2 1 3 1 1 1 2 1 2 3 2 1 2 1 2 1 2 2 2 3 2

3 2 3 1 1 1 1 1 2 3 2 3 3 2 3 3 1 2 3 2 2 3

2 3 2 2 3 1 3 3 1 2 3 1 2 3 2 2 2 3 1 1 1 2

2 3 2 1 1 1 3 3 1 2 2 3 1 1 2 1 3 2 2 1 3 2

2 3 3 2 3 3 1 3 2 2 1 3 2 2 3 1 2 1 2 3 2 3

2 3 1 2 3 2 2 1 2 3 1 1 1 2 1 2 3 2 1 1 1 2

1 3 1 2 2 2 2 2 3 1 1 3 3 2 1 2 2 2 2 3 2 1

3 1 1 3 2 1 2 2 3 1 3 3 1 1 3 2 3 1 2 1 3 2

2 1 3 3 1 2 1 2 2 2 1 3 2 2 2 1 1 1 2 1 2 3

2 2 2 2 1 1 3 3 1 1 3 3 1 1 1 2 3 1 2 2 3 1

2 1 2 2 2 1 3 1 2 2 2 3 1 2 3 1 2 2 3 1 3 3

I 1 1 1 3 2 3 2 1 3 3 1 2 3 1

i

020

Finite-State Finite-State
Machine I Machine II

Evolutionary
Program 99.3% 99.3«

Human Operator 1 63 %

Human Operator 2 41 %

Human Operator 3 40 %

Table 3.

021

If a time history of x(t) is generated by an exact solu-

tion of the differential equation above, a formulation of

n(n + m) linear equations using values of x(t), x(t), and

u(t) at points which will guarantee linear independence be-

tween these equations permits determination of the exact val-

ues of the n(n + m) unknowns of A and B.

If exact values of x(t) are not given yet x(t) and u(t)

for At sufficiently small are known, numerical differentia-

tion of x(t) yields sufficiently small are known, numerical

differentiation Of x(t) yields sufficiently accurate esti-

mates ov x{t) so that again, by formulating n(n + m) linear

independent equations, acceptable approximate values for the

unknowns A and B can be found.

If, however, the time history of x(t) is determined by

a process governed by the differential equation noted above,

but the sequence of values of the x(t) is obtained by measure-

ments, contaminated by noise, a solution of n{n + m) indepen-

dent linear equations will give only estimates of the unknowns

A and B. Improved estimates can be obtained by solving, in

the least square sense (or minimax, which is computationally

more difficult), a system with more than n(n + m) equations.

This "least square" solution is also applicable and useful in

the previously mentioned case where the x(t) have been obtained

by numerical differentiation of x(t).

022

These cases assumed that the values of x(t) were obtained

by a process which can be exaccly described by a linear differ-

ential equation of the form described above. However, this

equation may be only a first approximation to a process which

is, physically, a nonlinear process. This is the case, for

instance, in the equations of rotational motion of an aircraft,

where we have products of p, q, and r appearing in the equations

for p, q, and r. The problem, thus, consists in finding two

time invariant matrices, A and B, which allow the approxima-

tion of the nonlinear differential equations of motion by a

system of linear differential equations valid over a limited

period of time and range of state and control variables. The

problem of determining stability derivatives from flight data

falls into this last class.

Looking at the problem of system parameter identification

from the point of view of function optimization, the problem

can be formulated as follows: Define a payoff function. For

Instance,

z =
n
z

1 = 1
/end (x. xi)Vwi dt

Since x(t) is a function of the undetermined parameters

OT ... a„(n + m), z is also a function of these parameters, in

Consider them as Independent variables defining an n(n + m)

023

dimensional space. Here is the classical problem of minimiz-

ing a function of n(n + m) independent variables with no con-

straints.

This problem can be attacked in several ways: A general-

ized Newton-Raphson method for finding zeros of functions of

several variables may be used. Several gradient methods based

on steepest descent have been developed in the past. If the

number of independent variables is relatively large, methods

based on random search techniques have been used relatively

successfully. The problem of function minimization with many

independent variables is particularly difficult to solve econ-

omically when a comparatively large amount of computer time is

required to evaluate z and is larger than the time required

to make a decision about the necessary changes in the parameters

Here, the evolutionary program is used to find a logic which

should help to find a more rapidly converging path in the opti-

mization procedure. The program used permits adjusting two

free parameters, these starting with a random search proced-

ure and as soon as enough trials have been made using the

finite-state machine evolved by the evolutionary program to

decide which next move will yield an improvement in the value

of the payoff function.

Situations often arise in which it is desired to have a

given system or plant perform in a particular manner. The

problem then is how to manipulate the input parameters so as

024

to achieve the desired performance. The degree of difficul-

ty in accomplishing this result depends on many factors, for

example, the complexity of the plant dynamics, how well these

dynamics are known or the controllability of the input param-

eter. Consider the case where the input parameters are con-

trollable but the plant dynamics are only partially known.

A first step in controlling such a plant or device would be

to obtain a workable model of it. Suppose that it is possible

to sample the inputs and outputs at fixed time intervals so

that time histories of the input-output pairs are available.

For the application of the evolutionary program a natural

question is whether or not the time history can be adequately

modeled by a finite-stated machine. Can one find a class of

plants or devices so that sampled time histories can be ade-

quately modeled by finite-state machines? For such a class

the application of evolutionary programming then becomes feas-

ible.

Now a large class of input-output devices have their dy-

namics representable by differential equations. Consider those

where the output y(t) is related to the input x(t) by a differ-

ential equation of the form y' = F(x, y). Here F is assumed

to be only partially known. In practice, even if F were known,

closed-form solutions do not exist or are very difficult to

derive so that solutions are usually obtained by numerical

techniques. Such solutions consider sampled values at cer-

025

wmmmmm

tain time Intervals (usually fixed although sometimes variable

time steps are used). In general, the solution formulas give

the output value yn at the n-th step as a function of the cur-

rent Input value as well as a certain number of the previous

Input and output values, for example.

yn = f(xn, xn_1 xn_k, yn_1, ... , yn_k).

If the range of Input and output values are quantized

Into a finite number of Intervals, then the solution formula

gives a function from a finite Input alphabet to a finite

output alphabet which Is completely determined by the current

Input together with the last k Input and output. As will be

shown later In this report, such a function can be represented

by a finlte-syate machine and so finite-state machines provide

approximate models for this class of devices. How well they

can approximate such a device depends, of course, on the sam-

pling rate of the Input-output values as well as the Interval

sizes used In quantizing the range of Input and output values.

In order to demonstrate the feasibility of finite-state

machine controlled systems and to point out some of the diffi-

culties which will have to be expected In such systems, a simple

second-order sampled system, as shown In Figure 3, Is investi-

gated.

026

Sampler
Period T F

Controller
/

Quantizer
K

7
Outp
. ^

Figure 3. Second Order Sampled System

3/2

1/3 3/2

Figure 4. Finite-State Machine Controller
for Second Order System

027

Assume the system which has a finite-state machine as

controller to work as follows: After every T seconds, the

sampler Is closed for a time T << T. The present value of

the output variable Is quantized, and for our simple example,

a quantization into three levels will be assumed. The quan-

tized state variable x determines the input symbol to the

finite-state machine according to Table 4. Let the outputs

of the finite-state machine be the symbols 1, 2, or 3 and

let the following inputs to the second-order system corres-

pond to the three input symbols shown in Table 5. The finite-

state machine shown in Figure 4 will be a suitable controller

for such a system. In the form of a state transition table,

the finite-state machine is represented in Table 6. The dots

In Table 6 indicate "don't care" situations. If properly

synchronized, an input of 2 when the machine Is In state 2

can never occur. This shows that when designing a controller

In the form of a finite-state machine some thought must be

given on how to properly synchronize the system. This may

become one of the major design problems when the observed

values of the state variables which have to be controlled are

contaminated by noise. Noisy Inputs might well produce trans-

itions in the finite-state machine casuing loss of synchroni-

zation. Sometimes It is possible to design self-synchronizing

finite-state machines so that even a temporary transition into

028

X Input Symbol

X < 0

X > L

0 «C X <L

1

2

3

Table 4.

Output Force

1

2

3

0

-F

+F

Table 5.

State

A

B

C

Input |
1 2 3

A/3

A/3

A/3

V

C/2

C/2

B/2

B/2

C/l

Table 6.

029

an improper state will eventually correct itself. Such a

self-synchronizing finite-state machine may be more complex

than a finite-state machine capable only of controlling a sys-

tem with noise-free measured state variables. In any further

analysis, some effort should concentrate on solving the control

problem for noisy state variables.

Figure 5 shows the phase plane plot for a system using

the above-described finite-state machine starting the machine

in the properly synchronized state. The phase plane plot in-

dicates that the system can be controlled to achieve a stable

limit cycle. Note that the system, if sampled in any way in-

dicated in Figure 3, would be unstable in general when using

only one switching line, because of the time-delay between x

changing its sign and the switching of the forcing function.

Such a system would show a behavior as given in Figure 6.

Even a system with two switching lines where a zero force

would be applied within the region 0 < x < L would be unstable

due to the time delays of the switching; such a system would

show a behavior as displayed in Figure 7. Looking back at

the system controlled by the finite-state machine, we realize

that the capability of the finite-state machine to recognize

the path by which the system entered the state where 0<x<L

allows to apply zero force when passing through that state

in the direction of decreasing x, but applying negative force

when passing through those regions with increasing x. It be-

030

START

END

FIGURE 5.

Phasa Plane Plot of Second Order Sampled System
Controlled by Finite-State Machine

K-l; T-0.1; F«50; L-20

031

■►

Figure 6. Unstable
System with Only One
Switching Line.

X ▲

Figure 7. Unstable
Second-Order System
with Two Switching
Lines.

Uw-

032

comes also clear that a controller performing the same func-

tion could be designed if both x and x were available as inputs

to the controller. The solution with the finite-state machine,

however, has the advantage of not requiring knowledge of x.

Theoretical consideration shows that within the accuracy

of the quantizing of the data certain finite-state machines

could serve as models of transducers whose transfer functions

can be described by differential or difference equations. An

example of this is the modeling by finite-state machines of a

servo drive driven by a random sequence where the input and

output as functions of time are known. A section of the in-

put and output is shown in Figure 8.

Since the input is on-off, a two-level coding suffices.

The output was quantized into 80 levels. Two approaches were

considered for the finite-state machine. One, the input, would

be binary and the past output would be reflected in the states.

This would require a large number of states. The alternative

would be to code the actual servo input and the past output

into the finite-state machine input, thus, requiring fewer

states. This latter approach was selected with an input set

of 160 symbols and the output in 80 quantized levels.

Two machine models were evolved (Figure 9). A two-state

machine and a four-state machine resulted. The two-state ma-

chine modeled well in the middle part of the range where the

servo output was fairly linear but its accuracy fell off at

033

» ■ ■ . OUTPUT
 INPUT

Figure 8.

cm

81 — 160

1--80

81--160
(a) Two-State Machine

1—80

81 — 94

— 80

1--30

1--80

96—160

(b) Four-State Machine

Figure 9.

035

the extremes where the servo output was non-linear. The four-

state machine performed as well on the linear part and better

on the non-linear portion. Both models tracked the servo out-

put over the time history with an average error of less than

five percent.

The experiment also indicated some possible difficulties

which must be considered in application of finite-state machines

as models. One such is that the quantization levels and sampling

times are too short or the quantization levels too gross, the

change in output per sample time may not be reflected in the

quantized output and the machine becomes locked in an output

symbol. This problem occurred on the servo models at the ex-

tremes where the slope of the output curve was small. A pos-

sible remedy in the current model would be the non-linear quan-

tization of the servo output.

The possible use of automata for controlling unknown or

partially known plant systems* as shown in Figure 10 were con-

sidered. In these systems, M1 is a fixed transducer with in-

put I being a step input and Mg is a transducer with transfer

function of form K/f(s). K represents a gain and is a control-

lable input, the task being to maintain the output 0(t) between

two given curves, g^t) and g2(t) for 0 < t < T with T fixed

and t=0 corresponding to time of step input.

*The motivation for the example is a control system of an air-
plane with the input change of stick position.

036

Figure 10.

037

'

If K is restricted to a finite set of values, then, as

will be shown, for each value of k, the transfer function in

the time domain can be represented by a finite-state machine,

more exactly, by a finite input-output memory machine. A

parallel composition of these machines would then give a

model of M« permitting, at least in principle, a decision

algorithm to determine a best or an allowable value for K.

Now such an approach, particularly if K can assume a

large number of values, would be cumbersome. Moreover, since

each machine is actuated by the same input-output sequence,

few of the total number of states in the parallel composi-

tion are even exercised. But since the parallel composition

of finite input-output memory machines is also of this same

type, an alternative approach is to have a single such machine

as a model using many different training runs to evolve it.

It is important to consider extended memory machines and

embedded machines. An extended memory machine is a machine,

the input of which consists of the input symbol sequence to-

gether with some combination of the last few input symbols

and the last few outputs of the machine. For reference pur-

poses, denote the combination of previous input and output

symbols as the extended memory.

For such a machine with a given start jtate and a given

initial extended memory, there is an equivalent finite-state

038

machine without extended memory which has been called an em-

bedded machine. In general, different initial states and dif-

ferent initial extended memory can give rise to different em-

bedded machines.

The original technique for exhibiting the existence of

the embedded machines involved the finite-state functions

associated with these machines. While theoretically conven-

ient for proving existence of the embedded machine, this tech-

nique was difficult to implement and apply to the problem of

extracting the embedded machine. Since in applications to

modeling, extended memory machines were often used, a simpler

scheme for extracting the embedded machine was desired. Efforts

were made to devise one, this resulting in the technique des-

cribed below.

For simplicity the technique will first be described for

a machine whose extended memory consists of the last output

symbol. Let q. be a state of the extended memory machine and

let o. be a symbol which is an output for some transition into

q.. Then the pair q.o. gives rise to a possible state for the

embedded machines as does any other such state-output pair.

For such a state the output and next state transition assoc-

iated with each input symbol will now be given.

Let a be any input symbol; then for the state q.o. the

output is that output when state q. is given the input (o.a).

Suppose it is o^. Let q be the next state reference when

039

(o.a) is the input to state q^. Then the next state reference

for state q.o. with input a is the state q„o.. Note that this
i j n n k

satisfies the requirements for a possible state of the embedded

machine. The actual embedded machine is the submachine consist-

ing of those states which can be reached from the state corres-

ponding to the next state and the initial extended memory.

Consider the example defined by Table 7 of the machine

with extended memory consisting of the last output symbol.

This is a five-state machine with start-state 3 and initial

extended memory of 1. An input pair consists of the ordered

pair of the last output and current input. The entries in the

body of the table give next state and current output in that

order. For example, if the machine is in state 2 with input

of 13, it transfers to state 4 and outputs a 3. Table 8 lists

the states which might be states of the embedded machine. En-

tries in the table are interpreted as follows: The pair listed

in the next state, the second element in the pair, is the output.

A check of the table shows that states 11, 12, and 31 are indis-

tinguishable states and can be combined into one state which is

called 31 (since this is the start state). Also, states 41, 52,

and 53 can never be reached from the start state and so can be

dropped.

The resulting machine, which is the embedded machine, is

given by Table 9 with (a) being the next state reference por-

tion and (k) the output portion. Although the machine of

0^0

TABLE 7.

n 12 13 21 22 23 31 32 33

1 n 23 31 11 23 11 43 21 22

2 22 32 43 22 12 42 12 42 23

3 31 23 11 12 33 21 11 22 51

4 n 33 41 13 42 42 22 33 31

5 22 32 23 13 11 42 33 42 23

Start State - 3

Initial External Memory - 1

041

TABLE 8.

1 2 3

n 11 23 31

12 11 23 11

13 43 21 22

21 22 32 43

22 22 12 42

23 12 42 23

31 31 23 11

32 12 33 21

33 11 22 51

41 11 33 41

42 13 42 42

43 22 33 31

51 22 32 23

52 13 11 42

53 33 42 23

START STATE 31

042

TABLE 9.

1 2 3 1 2 3

13 43 21 22 3 1 2

21 22 32 43 2 2 3

22 22 31 42 2 2 2

23 31 42 23 2 2 3

31 31 23 31 1 3 1

32 31 33 21 2 3 1

33 31 22 51 1 2 1

42 13 42 42 3 2 2

43 22 33 31 2 3 1

51 22 32 23 2 2 3

(a) (b)

START STATE 31

043

Table 5 is a state output machine, the combining of states

11, 12, and 31 causes the resulting machine not to be a state

output machine. Hence, the output table is also required.

Consider now the case of the general extended memory

machine with extended memory of, say, the last k output sym-

bols and the last j input symbols. A typical input would

then be

'1 .. o i^ a I ••• a • a

with the subscripted portion being the extended memory. A

possible state in the embedded machine would be denoted by

the sequence

q»0i ... o^ai ... a,

where q. is a state of the extended memory machine and

o1 ... oka1 ... a..

is a sequence of inputs and outputs whose last transition

is into q.. The output for this state with input a would

be the output of state q. with

oi ... o■ ... a•a,

044

Suppose it is o. Further, let qn be the next state reference

when q-j has input

0 •% ••• 0 r, O i ••• 3*«

Then the next state reference for the state

q.o, ... o^a-, ... a. 'i"! k0l

with input a is

q-o9 ... o.oa9 ... a.a. ^"2 kuo2

It is well known that difference equations can be approxi-

mately represented by differential equations. These in turn can

be represented by finite-state machines within some quantization

error. In a differential equation the n-th output is represen-

ted as a function of some finite number of previous inputs and

outputs. It will now be shown that such a function can be rep-

resented by a finite-state machine.

Formally, if A and B are finite sets and zA is the class

of finite sequences of elements in A, then f is such a function

k+l k if f maps EA into B and if there is a function g on A x B

into B so that for n > k.

045

f(an ^ = g(an» an-T '•• * an-k' bn-l Vk3

where

b^ = f(a,j, ... , a-j) for i = 1, ... , n-1.

k + 1 k (A is the set of sequences of length k+1 for A and B is

the set of sequences of length k from B). That such a func-

tion f can be realized by a finite-state machine will be shown

by constructing a machine which will do so.

Consider the machine m = (A, B, S, s., x. 6) where S

consists of the initial state s , a state for each sequence

(aj V bj , b1) where 1 < j < k am

b.,. = f (a.j, ... , a-j) for 1 < i < J

and a state for each sequence

(a^t ... , ai, DK, ... s o-i /. '1 1

Not all k-tuples of b's are necessary, only those which are

possible values of f for the corresponding a's, but the ex-

traneous states pose no problem. The next state function x

046

is defined by

x(af s0) = (a, b) where b = f(a)

x(a,(a , — .a-j, b.,...,b^)) = (a,a .,... »a-i, b, b. ,...,b^)

for 1 < j < k where b = f(a, a., ... , a-j).

x(a, (a^» ... i ^it b.» ... , b-i)} - (a« a^, ... * &2*

b b9)

where

b = g(a, a^, ... , ap b^, ... , b^)

The output function 6 is defined by

6(a. s0) = f(a)

6(a, (a., ... , a,, b., ... , b^)) = f(a, a., ... , a-j)

for 1 < k < k

6(3,(3^,.. .a-j »b^,.. .b.|)) = g(a,a^ a-j »b^,... ,b^)

047

For any sequence of a from EA, a test by cases on the

length of a shows 6(a, s) = f(a) where 6 is the extension

of 6 from A to EA, that is, the machine M realizes the

function f. In general, the machine M is not reduced so that

an equivalent machine with fewer states would also realize

the function. Machines which realize such functions are termed

finite input output machines with memory length k. The above-

constructed machine has not more than

1 + (pq) + (pq)2 + ... + (pq)k

states where p is the number of input symbols and q is the

number of output symbols. On the other hand, Massey has ex-

hibited for any n, machines with n states and input-output

memory of length n(n-l)/2. Gill has shown that for any n-

state machine, this is the maximum memory length.

It can also be shown that the series or parallel compo-

sition of such finite input-output memory machines are finite

input-output machines. Since the evolutionary program mutates

1 Massey, James L. IEEE Transactions on Electronic Computers.
Vol. EC-15, No. 4, August 1966, pages 658-659.

2
Gill, A. Introduction to Theory of Finite-State Machines,
New

, A. introduction to meory c
York, McSraw-Hi'll, Inc., 19B2.

048

!

the underlying state structure or automata, if the finite

input-output machines have a well-defined underlying class

of automata, restricting the mutation to this subclass should

improve the efficiency of the evolutionary program in these

cases where a finite input-output machine is the desired one.

This was investigated. A class of automata was found which

for any output function yields finite input-output machines;

however, they are restricted in that the input alone deter-

mines the output, for example, for any input sequence of

length k only one output sequence is associated with it.

Such machines would not suffice, for example, to model de-

vices whose input-output function satisfies a differential

equation.

On the other hand, for any automata if the output alpha-

bet equals or exceeds the number of states, there exists out-

put functions which yield finite input-output machines. To

see this, let 6 be any input function such that for each in-

put symbol a and each pair of distinct states, s, and s»»

6(a» s-.) f 6(a, Sp). Since there are as many output symbols

as states, this is possible. Hence, for any given input sym-

bol, the resulting output symbol uniquely determines the state

and the machine has input-output memory of length two. It,

therefore, appears unlikely that a suitable subclass exists.

049

Finite-state machines were used in all applications of

the evolutionary program. More powerful logical entities

such as Turing machines were considered, however, inherent

difficulties such as the "halting" problem discouraged their

use. It was, therefore, appropriate to investigate logical

devices intermediate to finite-state machines and Turing ma-

chines. One candidate in this regard is pushdown automata.

These automata should be more powerful than finite-state ma-

chines in that they hold some explicit memory. Moreover,

they are not subject to the halting problem. In view of the

fact that mutation within the evolutionary program is applied

to the overlying finite-state automata (the output symbols

being deterministically generated so as to provide the best

fit of the data for the given automata), it appears particu-

larly appropriate to consider pushdown automata.

A pushdown automata M is a 6-tuple, (A, C, Q, 6, z , q),

where A is the input language, C is the pushdown alphabet,

0 is the set of states, z is a special pushdown symbol, q0

is the initial state, and 6 is a mapping of AXCXQ into C*xQ.

(C* is the set of all finite words which can be made from

the alphabet C including the empty word e.) Intuitively,

with each triple consisting of an input symbol, a pushdown

symbol, and a state, 6 associates a pair consisting of a

word made up of symbols from the pushdown alphabet and a

state (the next state). Translating this into machine opera-

050

tlon, suppose the automata has the word w in the pushdown

store where w = xc with x a word in C* and c in C, is in

state q.| and is given the input symbol a. If ö(a, c, q,) =

(y, qo)» then the automata goes into state q» and the word

xy is now in the pushdown store. Note that y may be the

empty word in which case the word in the pushdown store

would be x, for example, the symbol c is "erased." Under

this convention, it is the last symbol in the pushdown store

that is read so that the pushdown store is essentially a

last-in, first-out device. The symbol z is the initial

symbol in the pushdown store and to prevent emptying of

the store and the resulting premature halting of the autom-

ata, erasing of z is no allowed, that is, it is never

the case that 6(a, z , q) = (e, q').

The question remains as to whether or not pushdown

automata are more powerful than finite-state machines when

used as predictors. Only a partial answer to this question

can be offered. Note that a finite-state machine, when used

as a predictor (that is, the last output symbol is used as

the next input symbol), generates output sequences which are

eventually periodic. It is of interest to determine whether

or not pushdown automata, when used as predictors, will gen-

erate only sequences that are eventually periodic.

The action of a pushdown store automaton is determined

by a triple consisting of the present state of the automaton.

051

the input and the top symbol in the pushdown store. The

automaton then transfers to a next state (possibly the same),

outputs a symbol, and changes the pushdown store. Three dif-

ferent types of changes in the pushdown store can occur. The

top symbol may be erased and the next symbol from the top be-

comes the top symbol, the top symbol may be replaced by a

single symbol, or the top symbol may be replaced by a word

of length greater than one. Call a triple which results in

an erasure a decreasing triple and a triple which results in

the top symbol being replaced by a word of more than one sym-

bol an increasing triple. .

If a pushdown store autornata has no increasing triples,

then only the initial pushdown'symbol ever occurs in the push-

down store, and the automata is effectively a finite-state

machine. So there is no loss in generality in assuming the

automata has at least one increasing triple. A sequence of

successive triples for an automaton is called an increasing

sequence if it contains at least one increasing triple but

no decreasing triples. Similarly, a sequence is a decreas-

ing sequence if it contains at least one decreasing triple

but no increasing triples.

Lemma 1. When used as a predictor, a pushdown store

automata has increasing sequences of bounded length or it

has an increasing sequence of infinite length. If it enters

an increasing sequence of infinite length, then the output

052

is eventually periodic.

There are only a finite number of states, of input symbols,

and of pushdown symbols. There are, therefore, only a finite

number of increasing triples, say, k of them. Similarly, there

are only a finite number, m, of triples which are neither in-

creasing nor decreasing. Suppose there exists an increasing

triple of length at least k + m + 1, then either an increasing

triple or one which is neither increasing nor decreasing must

be repeated. Since in a sequence of triples none of which is

decreasing, only the top pushdown symbols are ever used, the

sequence of triples between repetitions of a triple is then re-

peated. The resulting increasing sequence is then infinite and

the output cyclic.

Lemma 2. When used as a predictor, if a pushdown store

automata has decreasing sequences of triples of bounded length,

the output is eventually cyclic.

If there is an infinite increasing sequence which can be

entered, then Lemma 2 follows from Lemma 1. Consider then the

case when all increasing sequences are bounded. Suppose the

bound on the length of the decreasing sequences is k, then if

the automata is actuated by a decreasing triple the ensuing

actions of the automata until an increasing triple is encoun-

tered are determined by the current triple and the top k sym-

bols in the pushdown store or by the word in the pushdown store

if it contains less than k symbols. Since there are only a

053

finite number of decreasing triples and a finite number of k-

tuples of pushdown symbols, the automata eventually must have

the current triple and the top k symbols on the pushdown store

a repetition of a previous one and so a cyclic output from that

point on.

As yet unresolved is the case of an automata which when

used as a predictor has increasing sequences of bounded length

but decreasing sequences of unbounded length. If such a machine

could exist then the possibility of other than eventually cyc-

lic output exists. Efforts to devise such a machine or to prove

it cannot exist have as yet been unsuccessful.

Thus, pushdown automata appear to be more powerful than

finite-state machines as predictors even though the output of

such a machine when used as a precictor is eventually periodic.

Specifically, pushdown automata have the advantage that, with

a given number of states, longer cycles can be generated than

by finite-state machines.

The next logical device to be considered is the stack

automata. Again, as in the case of both the finite-state ma-

chines and pushdown automata, only the deterministic form of

the automata will be considered. The stact automata has the

same basic structure as the pushdown automata with the addi-

tional ability to read any symbol in the stack, not just the

topmost symbol. A generalization of the stack automata has

also been introduced in which the Input tape can be run both

05^

forward and backward or remain stationary and is called a two-

way stack automata. The form considered here is the one-way

stack automata in which only forward movement or no movement

is permitted. The two-way stack is prone to the "halting prob-

lem." Since the stack pointer or reader moves one symbol at a

time, the stationarity of the input tape is required so as to

allow the machine the potential of reading any symbol on the

pushdown stack.

To show that a stack automata is actually more powerful

than the pushdown automata, consider the set jwcwl where w is

any word in ja, b|* and c is a symbol different from a and b}.
3

It is known that this set of words is not a context-free

language and, hence, is not acceptable by a pushdown automata.

However, it is acceptable by the stack automata which is now

described.

The stack automata consists of four states, (1, 2, 3, and

4), with 1 as the initial state and J3} as the set of terminal

states, for example, 3 is the only terminal state. In the

initial state it duplicates the input symbol on the pushdown

stack, moves to the next stack position and next input posi-

tion, and remains in state 1 unless the symbol is a c or a

Gfnsburg, Seymour. The Mathematical Theory of Context-Free
Languages, McGraw-Hill, Inc., New York, 19&6.

055

blank which indicates end of Input. Hence, any word w without

a c in It Is duplicated In the pushdown store. If a blank Is

Input, the machine stays In state 1 and stops. When a c Is

the Input In state 1, the machine moves the stack pointer back

to the first stack symbol, moves the input ahead one, and goes

to state 2. In state 2, as long as the Input tape is not blank

and the input tape and stack agree, it moves the stack and in-

put ahead one position and remains in state 2. If the symbols

disagree. It goes to state 4 where it stays for any input and

stack symbol stopping the machine on a blank input. If the ma-

chine is still in state 2 when end of tape is reached, for ex-

ample, a blank is input, and if stack symbol is blank, it moves

to state 3 and machine stops, otherwise, it stays in state 2 and

stops. Hence, the machine reaches state 3 and stops there only

If the input is of form wcw with w in |a, b}*.

Intuitively, the pushdown store cannot recognize a word of

form wcw since, although w can be stored, the machine reads it

backward and so, except for polindromes, cannot correctly com-

pare the word after the c with the word in front. Note that a

pushdown store can accept jwcw where w Is the word w reversed}
D

since reading w backwards is equivalent to reading w forward.

The usual formulation for the stack automata requires that

the Input alphabet A contain a special symbol ß, the terminal

symbol. A word w from JA - |ß}} *, for example, w contains no

ß's, is accepted by M if whenever the word ws is input with M

056

in state s , then when symbol ß Is read the machine enters

one of the terminal states. The symbol & is not necessary,

but simplifies the formulation. For a two-way stack automata

an initial input symbol is needed to prevent running off the

beginning of the tape.

When used as a transducer or predictor, the terminal

symbol is unnecessary since in this application there is no

concern for a last input symbol. Also, the set of terminal

states is replaced by an output language C and the result of

6 or 6A is now a quadruple rather than a triple. The first

three coordinates are as before (for example, next state,

movement of input tape, movement of stack pointer, and any

writing or erasing of stack symbols) with the fourth coordin-

ate the output symbol. One of the possible output symbols is

the blank or equivalently no output so as to allow the stack

pointer to move more than one space before an output is re-

quired.

Previous analysis indicated that when used as a predic-

tor the pushdown automata would output only cyclic sequences

and so does not improve on the finite-state machine as a pre-

dictor. A stack automaton will now be given which outputs as

a predictor the sequence 0 10 0 110..., for example, al-

ternate sequences of 0's and I's of increasing length, which

is certainly not cyclic.

Let M be the stack automaton with

057

S = |s0. s^ s2, S3I

A - JO. If

B = 10. 1. zl

c = |o. i. A!

and § and 5* defined as follows

fi(so» ' • zo) ' (so' N» R' A)'

6(s0. • . 1) = (s0, R, R, 1)

6.(sn, * . A) = (s,, N, N 1, A) **

6(5,, * , 1) = (s,, N, 2. A)

6(5,, • . zn) = (s?, N, R, A)

6(s?, ' , 1) = (s9, R, R, 0)

The • indicates either a 0 or a 1 can be entered.
**

N 1 indicates no move and writing a 1 on the blank space
being read.

058

6.(s2, • , A) = (S3, N, L, A)

6(53, • . 1) = (S3, N, L, A)

«(S3, * , 20) = (s0, N, R, A)

The remaining triples on which 6 and öä should be defined

cannot occur and so are not included.

A description of the machine's actions follows. At the

start it is in state s with the 0 or 1 as input symbol and

stack symbol z . It stays in state s with same input, but

moves stack symbol ahead to next space which, at this time,

is blank. It then prints a 1 in this blank space, does not

move input tape or output a symbol, and moves to state s*.

Other wise, when it enters s , the stack pointer is on the

bottom 1, the machine then moves both the input tape and

stack pointers right and outputs a 1 for each 1 on the stack.

When the pointer leaves the word on the stack to the first

blank, the machine prints a 1 there, does not move the input

tape, does not make an output, and goes to state s,. In state

s-i there is no input tape movement nor output, the machine

moves the stack pointer back until it reaches z staying in

state s^. When the pointer reaches z , it is returned to the

bottom 1 on the stack and the machine goes to state s» without

059

m oving the Input tape or outputing a symbol. In So the ma-

chine's actions are as in s except the output is a 0 rather

than a 1 and when the stack pointer reaches the first blank

space, the machine moves it back to the topmost 1 on the

stack and goes to state s . State s, is a duplicate of state
3 J

s-. except when the stack pointer reaches the symbol z , the

machine moves to state s„ rather than state So. This com- o c

pletes a cycle and the machine goes through the cycle over

and over except during each cycle the number of I's on the

stack is increased by one and consequently so is the length

of the output sequences of zeroes and ones. For convenience,

this machine was constructed so as to be independent of the

input. By making the output depend on the input, different

output sequences would result depending on the initial input

symbol.

060

CONCLUSION

Finite-state machines provide a natural basis for the pre-

diction of time series and the modeling of an unknown transducer.

Evolutionary programming offers a means for finding suitable fi-

nite-state machines with respect to a given goal (payoff or

error-cost matrix) so long as the cost of required data proces-

sing does not become excessive. Tracing the average cost of

computation in the recent past makes it reasonable to expect

much greater efficiency in coming years. The advent of intrin-

sic parallel computers would open new prospects for the realiza-

tion of prediction and modeling through the continual search for

automata which are most appropriate to the situation at hand.

In fact, such mechanisms might permit improving population prop-

erty constraints on the inheritance of the evolving organisms.

Various possibilities for governing the nature and amount

of mutation "noise" have been considered. However, here there

is an essential trade-off between efficiency and security...the

more tightly linked the mutation noise to the successful kinds

of mutations which have occured in the past, the less the like-

lihood of finding radical departures in terms of the logic of

prediction and control. The greater the efficiency in the

search for each new logic within a restricted class of poten-

061

tial environments, the less the versatility of the program and

the more predictable becomes its behavior. In the face of a

competitive environment, it may well prove worthwhile to be

less efficient and most versatile, even at far greater compu-

tation cost.

Evolution, indeed, the scientific method, occurs at vari-

ous levels of abstraction. It is clearly worthwhile to restrict

attention to those models which have, in the past, been found

most worthwhile and to model these as a basis for further pre-

diction and control. In fact, models of models can be used at

all levels, provided the sample size is adequate. Difficulty

is encountered, however, in that the alphabet of possible sym-

bols is much greater at each higher level. Wise judgment as to

the use of a reduced alphabet of descriptors may prove worthwhile

or the very essence of the higher-level modeling may have been

lost. Such selection of an appropriate alphabet reduction forms

a meta-problem which can only be dealt with within a particular

well-defined frame of reference. Such evolutionary programming

remains to be explored.

The immediate problem of this investigation has been to

devise new means for solving immediate real world problems of

Naval interest. Thus, with this intent, attention has been fo-

cused upon developing an improved logical capability with re-

spect to a wide class of practical problems. Hopefully, this

062

technique can also be used to investigate the sensitivity of

prediction and control with respect to various goals. Hope-

fully, it may require explicit consideration of the problem of

choosing meaningful descriptors and goal formulation.

063

REFERENCES

1.

la.

2.

3.

4.

5.

6.

7.

Artificial Intelligence Through Siyulated Evolution.
L. J. Fogel, A. J. Owens, and M. J. Walsh, John Wiley
& Sons, Inc., New York, 1966.

Artificial Intelligence and Evolutionary Modeling, in
Russian, a translation of Artificial Intelligence Through
Simulated Evolution, by L. J. Fogel, A. J. Owens, and
M. J. Walsh, John Wiley & Sons, 1966, Peace Publishers,
Moscow, 1969.

"Artificial Intelligence Through a Simulation of Evo-
lution," by L. J. Fogel, A. J. Owens, and M. J. Walsh,
Chapter 14 of Biophysics and Cybernetic Sciences Sym-
posium, edited by M. Maxfie.ld, A. Callahan, and L. J.
Fogel, Spartan Book Company, Washington, D. C., pages
131-155.

"Intelligent Decision-Making Through a Simulation of
Evolution," by L. J. Fogel, A. J. Owens, and M. J.
Walsh, IEEE Transactions of the Professional Technical
Group on Human Factors in Electronics. Vol. 6, No. 1,
pages 13-23; reprinted in Simulation. Vol. 5, No. 4,
pages 267-279; and in Behavioral Science. Vol. 11,
No. 4, July 1966, pages 253-272.

Adaption of Evolutionary Programming to the Prediction
of Solar Flares. NASA Report No. CR-417, by L. J. Fogel,
A. J. Owens, and M. J. Walsh, Clearinghouse for Federal
Scientific and Technical Information, Springfield,
Virginia, 1966.

"Application of Evolutionary Programming," by L. J.
Fogel, A. J. Owens, and M. J. Walsh, 1966 Record of
the IEEE Systems Science and Cybernetics Conference.
October 17 and 18, 1966, Washington, D. C.

■ -i

- I
4

Evolution
Fogel,
No.

of Finite
Owens, irr.

RADC-TR-66-69,

Automata for
and M. J. Walsh,

USAF, June 1966.

Prediction, by L. J.
Technical Report

"Inanimate Intellect Through Evolution," Naval Research
Reviews, Vol. XX, No. 11, November 1967, pages 9-18.

064

i

^V-SffiWfflES

8. On the Design of Conscious Automata, Final Report on
Contract No. N67-Z0632, 31 October 1966, 102 p. refs.,
(AFOSR-66-2872; AD-644204), Vol. 5, No. 10, N67-20381-
N67-21880. May 23, 1967.

9. "Extending Communication and Control Through Simulated
Evolution," reprinted from Bioengineering-'-An Engineer-
ing View, edited by 6. Bugliarello, San Francisco Press,
Inc., San Francisco, 1968.

10. Modeling the Human Operator with Finite-State Machines,
by L. J. Fogel and R. A. Moore, Final Report on Contract
No. NAS1-6739, July 1968.

11. "Toward the Design of Self-Sufficient Protheses,"
Chapter 11 of Biocybernetics of the Central Nervous
System, edited by I. D. Proctor; Little, Brown, and
Company, Boston, 1969.

12. Competitive Goal-Seeking Through Evolutionary Program-
ming, by L. J. Fogel ana G.H. Bürgin. Final Report on
Contract No. AF19-(628)-5927, February 1969.

065
^

I lllllllfllll
1

i UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA • R&D
(Sieurlty claflllcallon ol Uli», body ol mbttrael and Indenlng annotation mual ba antarad whan lha overall report la clasailled)

i

I ORIGINATING ACTIVITY (Corporate author)

Decision Science, Inc.
4508 Mission Bay Drive
San Diego. California 92109

2a. REPORT tECURITV CLASSIFICATION

UNCLASSIFIED
2 0 OROUP

N/A
3 REPORT TITLE

Prediction and Control Through the Use of Automata and Their Evolutior

4 DESCRIPTIVE NOTES (Type ol «port anil Inclualva dataa)

Final Report
S AUTHORfS,) (Lmat name. Ilrat name, Initial)

Walsh, Michael J.
Bürgin, George H.
Fogel , Lawrence J .

«. REPORT DATE

September 15, 1970
7«- TOTAL NO. OF PACES

61
7b. NO. OF REFI

3
• ■. CONTRACT OR «RANT N3.

N00014-66-C-0284
fc PROJECT NO.

9a. ORIGINATOR'S REPORT NUMBERft)

9b. OTHER REPORT NOfSJ (Any other numbara that may be aaalgnad
Ihla taporl)

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its
distribution is unlimited.

H. SUPPLEMENTARV NOTES

N/A

12. SPONSORING MILITARY ACTIVITY

Department of the Navy
Office of Naval Research
Washington, D. C. 20360

IS. ABSTRACT
The concept of evolutionary programming was conceived as a means to
find a most appropriate finite-state machine for the purpose of pre-
diction or modeling in terms of an available data base and a payoff
or error-cost matrix. Formulation and development of this concept
can be traced through various publications. In this work, the use
and evolution of various types of automata in prediction and control
were considered. Certain problems were recognized and resolved while
others were identified and brought into closer perspective. The
report also includes specific findings which serve to clarify the
capability and limitations of using automata and evolutionary pro-
gramming for the purpose of prediction and control.

/

DD -A 1473 oiot.ior-etoo UNCLASSIFIED

laptoducad by
NATIONAL TECHNICAL
INFORMATION SERVICE

Springfiald, Va. 22191

Security Classification

rnmmim
 ."Hi ■nnupi iflU)-;»"■'— ' K—

UNCLASSIFIED
Secutity Classification

14.
KEY WORDS

LINK A

ROLE WT

LINK B

ROLE WT

LINK C

ROLE WT

Automata Theory
Control
Prediction
Differential Equation

INSTRUCTIONS

t. ORIGINATING ACTIVITY: Enter the name and address
of (he contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECUHTY CLASSIFICATION: Enter the ovei-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to b* in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual, Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ised.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles In all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authorCs) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report is day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

76. NUMBER OF REFERENCES: Enter the total numbat of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

86, 8c, & id. PROJECV NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shali request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(S) "All distribution of this report is controlled Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known,

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay
ing (or) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such os equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, roles, and weights is optional.

UNCLASSIFIED
Security Classification

